博彩网大全-双色球博彩知识

網(wǎng)站頁面已加載完成

由于您當(dāng)前的瀏覽器版本過低,存在安全隱患。建議您盡快更新,以便獲取更好的體驗。推薦使用最新版Chrome、Firefox、Opera、Edge

Chrome

Firefox

Opera

Edge

ENG

當(dāng)前位置: 首頁 · 學(xué)術(shù)交流 · 正文

學(xué)術(shù)交流

【學(xué)術(shù)報告】研究生靈犀學(xué)術(shù)殿堂第193期之Arthur Gretton報告會通知

發(fā)布時間:2017年07月04日 來源:研工部 點(diǎn)擊數(shù):

全校師生:

我校定于2017年7月5日舉辦研究生靈犀學(xué)術(shù)殿堂——Arthur Gretton報告會,現(xiàn)將有關(guān)事項通知如下:

1.報告會簡介

報告人:Arthur Gretton

時 間:2017年7月5日(星期三) 上午9:00(開始時間)

地 點(diǎn): 長安校區(qū) 89院之間報告廳

主 題: Learning Interpretable Features to Compare Distributions

內(nèi)容簡介:I will present adaptive two-sample tests with optimized testing power and interpretable features. These will be based on the maximum mean discrepancy (MMD), a difference in the expectations of features under the two distributions being tested. Useful features are defined as being those which contribute a large divergence between distributions with high confidence. These interpretable tests can further be used in benchmarking and troubleshooting generative models, in a goodness-of-fit setting. For instance, we may detect subtle differences in the distribution of model outputs and real hand-written digits which humans are unable to find (for instance, small imbalances in the proportions of certain digits, or minor distortions that are implausible in normal handwriting).

2.歡迎各學(xué)院師生前來聽報告。報告會期間請關(guān)閉手機(jī)或?qū)⑹謾C(jī)調(diào)至靜音模式。

黨委研究生工作部

電子信息學(xué)院

2017年6月30日

報告人簡介

Associate Professor of the Gatsby Computational Neuroscience Unit from the part of the Centre for Computational Statistics and Machine Learning at UCL. His research focus on using kernel methods to reveal properties and relations in data. A first application is in measuring distances between probability distributions. These distances can be used to determine strength of dependence, for example in measuring how strongly two bodies of text in different languages are related; testing for similarities in two datasets, which can be used in attribute matching for databases (that is, automatically finding which fields of two databases correspond); and testing for conditional dependence, which is useful in detecting redundant variables that carry no additional predictive information, given the variables already observed. I am also working on applications of kernel methods to inference in graphical models, where the relations between variables are learned directly from training data.

最好的百家乐官网博彩网站| 百家乐声音不印网| 定兴县| 淘金盈开户| 百家乐娱乐网官网网| 拉斯维加斯国际娱乐| 做生意风水| 百家乐官网心得打法| 百家乐官网走势图研究| 大发888充值平台| JJ百家乐官网的玩法技巧和规则| 百家乐真人游戏| 百家乐官网博娱乐场开户注册| 百家乐官网技术交流群| 大发888官方备用| 24山的财位| 御匾会百家乐官网的玩法技巧和规则 | 大发888 网站被攻击了| 香港六合彩票| 百家乐网真人真钱群| 真人百家乐官网游戏软件| 百家乐换人| 奔驰百家乐游戏电玩| 十三张百家乐官网的玩法技巧和规则| 涡阳县| 网络百家乐玩法| 鼎龙娱乐城开户| 百家乐官网视频游戏大厅| 大发888常见断续| 大发888容易赢吗| 百家乐官网网站那个好| 什么是百家乐赌博| 十六浦娱乐城信誉| 蒙特卡罗代理| 百家乐赌博器| 百家乐官网变牌器| 真钱百家乐哪里最好| 百家乐投注平台信誉排行| 八大胜博彩| 澳门博彩股份有限公司| 百家乐赌博策略论坛|