博彩网大全-双色球博彩知识

網(wǎng)站頁面已加載完成

由于您當(dāng)前的瀏覽器版本過低,存在安全隱患。建議您盡快更新,以便獲取更好的體驗。推薦使用最新版Chrome、Firefox、Opera、Edge

Chrome

Firefox

Opera

Edge

ENG

當(dāng)前位置: 首頁 · 學(xué)術(shù)交流 · 正文

學(xué)術(shù)交流

【學(xué)術(shù)報告】研究生靈犀學(xué)術(shù)殿堂第193期之Arthur Gretton報告會通知

發(fā)布時間:2017年07月04日 來源:研工部 點(diǎn)擊數(shù):

全校師生:

我校定于2017年7月5日舉辦研究生靈犀學(xué)術(shù)殿堂——Arthur Gretton報告會,現(xiàn)將有關(guān)事項通知如下:

1.報告會簡介

報告人:Arthur Gretton

時 間:2017年7月5日(星期三) 上午9:00(開始時間)

地 點(diǎn): 長安校區(qū) 89院之間報告廳

主 題: Learning Interpretable Features to Compare Distributions

內(nèi)容簡介:I will present adaptive two-sample tests with optimized testing power and interpretable features. These will be based on the maximum mean discrepancy (MMD), a difference in the expectations of features under the two distributions being tested. Useful features are defined as being those which contribute a large divergence between distributions with high confidence. These interpretable tests can further be used in benchmarking and troubleshooting generative models, in a goodness-of-fit setting. For instance, we may detect subtle differences in the distribution of model outputs and real hand-written digits which humans are unable to find (for instance, small imbalances in the proportions of certain digits, or minor distortions that are implausible in normal handwriting).

2.歡迎各學(xué)院師生前來聽報告。報告會期間請關(guān)閉手機(jī)或?qū)⑹謾C(jī)調(diào)至靜音模式。

黨委研究生工作部

電子信息學(xué)院

2017年6月30日

報告人簡介

Associate Professor of the Gatsby Computational Neuroscience Unit from the part of the Centre for Computational Statistics and Machine Learning at UCL. His research focus on using kernel methods to reveal properties and relations in data. A first application is in measuring distances between probability distributions. These distances can be used to determine strength of dependence, for example in measuring how strongly two bodies of text in different languages are related; testing for similarities in two datasets, which can be used in attribute matching for databases (that is, automatically finding which fields of two databases correspond); and testing for conditional dependence, which is useful in detecting redundant variables that carry no additional predictive information, given the variables already observed. I am also working on applications of kernel methods to inference in graphical models, where the relations between variables are learned directly from training data.

宁河县| 百家乐公式球打法| 大发888真钱赌场娱乐网规则| 玩百家乐官网必赢的心法| 打百家乐官网的技巧| 边城棋牌中心| 百家乐国际娱乐场| 开百家乐官网骗人吗| 永利高百家乐官网开户| 金凤凰平台| 百家乐投注外围哪里好| 百家乐视频聊天软件| 百家乐官网如何赚洗码| 德晋百家乐官网的玩法技巧和规则| 通化市| 网上百家乐官网骗人的| 百家乐官网庄闲的冷热| 线上百家乐官网技巧| 赌球网| 武夷山市| 百家乐官网技巧-百家乐官网开户指定代理网址| 百家乐官网庄闲比率| 百家乐官网有好的投注法吗| 百家乐官网上海代理| 百家乐官网7杀6| 尊龙百家乐官网娱乐场开户注册| 足球百家乐官网投注网出租 | 赌王百家乐的玩法技巧和规则 | 百家乐娱乐场真人娱乐场| 威尼斯人娱乐场xpjgw5xsjgw| 百家乐统计工具| 赌博百家乐赢钱方法| 游戏机百家乐官网下载| 百家乐官网投注| 百家乐平注胜进与负追| 百家乐真人游戏攻略| 百家乐路单规则| 威尼斯人娱乐城网址| 欧洲百家乐的玩法技巧和规则| 龙岩棋牌乐| 百家乐官网园搏彩论坛|