博彩网大全-双色球博彩知识

網(wǎng)站頁面已加載完成

由于您當(dāng)前的瀏覽器版本過低,存在安全隱患。建議您盡快更新,以便獲取更好的體驗。推薦使用最新版Chrome、Firefox、Opera、Edge

Chrome

Firefox

Opera

Edge

ENG

當(dāng)前位置: 首頁 · 學(xué)術(shù)交流 · 正文

學(xué)術(shù)交流

【學(xué)術(shù)報告】研究生靈犀學(xué)術(shù)殿堂第193期之Arthur Gretton報告會通知

發(fā)布時間:2017年07月04日 來源:研工部 點(diǎn)擊數(shù):

全校師生:

我校定于2017年7月5日舉辦研究生靈犀學(xué)術(shù)殿堂——Arthur Gretton報告會,現(xiàn)將有關(guān)事項通知如下:

1.報告會簡介

報告人:Arthur Gretton

時 間:2017年7月5日(星期三) 上午9:00(開始時間)

地 點(diǎn): 長安校區(qū) 89院之間報告廳

主 題: Learning Interpretable Features to Compare Distributions

內(nèi)容簡介:I will present adaptive two-sample tests with optimized testing power and interpretable features. These will be based on the maximum mean discrepancy (MMD), a difference in the expectations of features under the two distributions being tested. Useful features are defined as being those which contribute a large divergence between distributions with high confidence. These interpretable tests can further be used in benchmarking and troubleshooting generative models, in a goodness-of-fit setting. For instance, we may detect subtle differences in the distribution of model outputs and real hand-written digits which humans are unable to find (for instance, small imbalances in the proportions of certain digits, or minor distortions that are implausible in normal handwriting).

2.歡迎各學(xué)院師生前來聽報告。報告會期間請關(guān)閉手機(jī)或?qū)⑹謾C(jī)調(diào)至靜音模式。

黨委研究生工作部

電子信息學(xué)院

2017年6月30日

報告人簡介

Associate Professor of the Gatsby Computational Neuroscience Unit from the part of the Centre for Computational Statistics and Machine Learning at UCL. His research focus on using kernel methods to reveal properties and relations in data. A first application is in measuring distances between probability distributions. These distances can be used to determine strength of dependence, for example in measuring how strongly two bodies of text in different languages are related; testing for similarities in two datasets, which can be used in attribute matching for databases (that is, automatically finding which fields of two databases correspond); and testing for conditional dependence, which is useful in detecting redundant variables that carry no additional predictive information, given the variables already observed. I am also working on applications of kernel methods to inference in graphical models, where the relations between variables are learned directly from training data.

棋牌评测网| 百家乐官网英皇娱乐城| 百家乐乐百家娱乐场| 百家乐官网娱乐官方网| 网上百家乐官网导航| 澳门玩百家乐赢1000万| 威尼斯人娱乐网反| 鹤峰县| 木星百家乐官网的玩法技巧和规则| 必博| 扑克百家乐赌器| 百家乐官网皇室百家乐官网| 百家乐娱乐城| 百家乐官网巴厘岛上海在线| 恒利百家乐的玩法技巧和规则| 百家乐官网牌壳| 百家乐官网视频麻将游戏| 24山吉凶段| 万博国际| 百家乐桌出租| 24山双山五行的用法| 温宿县| e世博百家乐娱乐场| 注册送现金| 太阳城开户| 国美百家乐的玩法技巧和规则 | 百家乐筹码方形筹码| 赌博百家乐官网的玩法技巧和规则 | 百家乐官网博娱乐场| 大发888娱乐场 ylc8| 百家乐官网技巧网址| 破解百家乐官网游戏机| 百家乐官网可以算牌么| bet365网址器| 网上棋牌游戏赚钱| 七胜百家乐官网娱乐| 菲律宾百家乐官网娱乐网| 3U百家乐官网游戏| 恒丰百家乐的玩法技巧和规则| 风水24山里的四维八干| 重庆百家乐官网的玩法技巧和规则|