博彩网大全-双色球博彩知识

網站頁面已加載完成

由于您當前的瀏覽器版本過低,存在安全隱患。建議您盡快更新,以便獲取更好的體驗。推薦使用最新版Chrome、Firefox、Opera、Edge

Chrome

Firefox

Opera

Edge

ENG

當前位置: 首頁 · 學術交流 · 正文

學術交流

【學術講座】美國喬治梅森大學Paulo C. G. Costa副教授講座通知

發布時間:2017年07月10日 來源: 點擊數:

報告題目:First Order Probabilistic Semantics in High-Level Information Fusion

人:Paulo C. G. Costa, Associate Professor

講座時間:2017年7月12日 上午10:00

講座地點:電子信息學院119會議室

人:張建東

承辦學院:電子信息學院

人:張建東

聯系電話:13630219356

報告簡介:

Research on the subject of information fusion has focused primarily on lower-level data alignment (e.g. multi-sensor data fusion, syntactic protocols, distributed simulation, etc), on semantic mapping solutions (e.g. Semantic Web approaches, specialized semantic mapping solutions, etc), or other topics that do not fully address the fundamentals of high-level knowledge integration. As information flow in many real world applications grows larger and more complex, it becomes clear that advances in connectivity and computation alone are insufficient to address the problem of merging knowledge from heterogeneous sources. The sheer volume of data creates informational and cognitive bottlenecks. Incompatible formats and semantic mismatches necessitate tedious and time-consuming manual processing at various points in the decision cycle. As a result, massive amounts of potentially relevant data remain unexploited, narrow processing stovepipes continue to provide stop-gap solutions, and decision makers’ cognitive resources are too often focused on low-level manual data integration rather than high-level reasoning about the situations to be addressed.

This knowledge gap has been recognized and in spite of recent advances in HLIF research there is still a lack of a theoretical framework to enable HLIF applications. In this presentation, I introduce First-Order Probabilistic Semantics as a candidate for filling this gap, as it addresses the various challenges in merging complex data while properly accounting for the inherent uncertainty that comes from such data. I will present the key concepts of the framework and provide an update on the current status of its development, while showcasing a few examples of how the framework is being applied in diverse application areas.

報告人簡介:

Paulo Cesar G. Costa博士是巴西空軍資深飛行員,2008年退役,現任美國喬治梅森大學系統工程與運籌系副教授,喬治梅森大學C4I中心國際合作副主任,無線電與雷達工程實驗室聯合主任。他的研究興趣包括電子戰、決策支持系統、多傳感器數據融合,概率表示和推理等。Costa教授開發了PR-OWL,是UnBBayes-MEBN的重要貢獻者,Costa教授目前是美國NSF,美國國家工程院等審查委員會成員,IEEE高級會員,當選國際信息融合學會(2016-2018年任期)理事會成員,2015年國際信息融合大會主席,現任ISIF工作組副主席。

十三张百家乐的玩法技巧和规则| 百家乐韩泰阁| 百家乐单注技巧| 足球改单平| 大发888网址官方| 百家乐官网推二八杠| 博E百百家乐的玩法技巧和规则| 网上的百家乐官网是真是假| 澳门百家乐注册| 百家乐鞋业| 游戏百家乐官网庄闲| 皇城百家乐官网娱乐城| 威尼斯人娱乐城游戏平台| 盈丰国际平台| 百家乐押注方法| 海王星百家乐官网的玩法技巧和规则 | 百家乐官网游戏技巧| 豪盈国际娱乐| 百家乐庄闲出现几| 百家乐香港六合彩| 百家乐平台租用| 神娱乐百家乐官网的玩法技巧和规则| 百家乐线路图分析| 真人百家乐平台排行| 百家乐官网必赢术| 皇家娱乐| 易球百家乐娱乐城| 百家乐官网必知技巧| 汝南县| 百家乐哪条路准| 百家乐官网扑克投注赢钱法| 百家乐投注程式| 做生意门面对着什么方向好| 百家乐官网3宜3忌| 六合彩下注| 大发888有手机版本吗| 大发888娱乐城下载新澳博| 百家乐筹码币套装| 海港城百家乐的玩法技巧和规则 | 网上百家乐官网解密| 子山午向的房子24山图|