博彩网大全-双色球博彩知识

網(wǎng)站頁面已加載完成

由于您當(dāng)前的瀏覽器版本過低,存在安全隱患。建議您盡快更新,以便獲取更好的體驗。推薦使用最新版Chrome、Firefox、Opera、Edge

Chrome

Firefox

Opera

Edge

ENG

當(dāng)前位置: 首頁 · 學(xué)術(shù)交流 · 正文

學(xué)術(shù)交流

【學(xué)術(shù)講座】圖的Tutte多項式近期研究進展

發(fā)布時間:2017年10月16日 來源: 點擊數(shù):

報告題目:圖的Tutte多項式近期研究進展

報告人:葉永南教授

講座時間:2017年10月21日10:15-11:00

講座地點:友誼校區(qū)國際會議中心第一會議室

邀請人:張勝貴

承辦學(xué)院:理學(xué)院

聯(lián)系人:陸由

聯(lián)系電話:18202966680

報告簡介

William Tutte is one of the founders of the modern graph. For every undirected graph, Tutte defined a polynomial TG(x,y) in two variables which plays an important role in graph theory. In this talk, we will introduce some recent progresses in studies of the Tutte polynomial of a graph.

In Tutte's original definitions, non-negative integers, called internal and external activities with respect to the arbitrary enumeration, are defined for each spanning tree, they serve as the indices of x and y in the product that is the corresponding term of Tutte polynomial. First, We will introduce the conceptions of \sigma-cut tail and \sigma-cycle tail of T, which are generalizations of the conceptions of internally and externally activities, repectively, where \sigma is a sequence on the edge set of G and T is a spanning tree of G. We will also discuss the conceptions of proper Tutte mapping and deletion-contraction mapping.

In 2004, Postnikov and Shapiro introduced the concept of G-parking functions in the study of certain quotients of the polynomial ring. The Tutte polynomial of the graph G can be expressed in terms of statistics of G-parking functions. Let ? be a nonsingular M-matrix. We will introduce ?-parking functions which is a generalization of G-parking functions. We will introduce the abelian sandpile model and ?-recurrent configurations. There is a simple bijection between ?-parking functions and ?-recurrent configurations. We will discuss the geometry of sandpile model.

In general, the Tutte polynomial encodes information about subgraphs of G. For example, for a connected graph G, TG(1, 1) is the number of spanning trees of G, TG(2, 1) is the number of spanning forests of G, TG(1, 2) is the number of connected spanning subgraphs of G, TG(2, 2) is the number of spanning subgraphs of $G$. At last, we will discuss combinatorial interpretations of TG(1+p, -1)$ and TG(-1, 1).

報告人簡介

葉永南,臺灣中研院數(shù)學(xué)研究所研究員,1985年在美國紐約州立大學(xué)水牛城分部獲得博士學(xué)位,1987年7月返臺擔(dān)任中央研究院數(shù)學(xué)所副研究員,1991年1月晉升為研究員迄今。曾任加拿大魁北克大學(xué)蒙特婁分部資訊與數(shù)學(xué)系研究學(xué)者,麻省理工學(xué)院數(shù)學(xué)系、柏克萊加州大學(xué)統(tǒng)計系和澳洲Monash大學(xué)經(jīng)濟系訪問學(xué)者。學(xué)術(shù)研究除了數(shù)學(xué)之外,還涉及物理化學(xué)、統(tǒng)計、經(jīng)濟等多個領(lǐng)域。曾任臺灣數(shù)學(xué)推動中心主任,中研院數(shù)學(xué)所副所長,多次獲得臺灣中研院杰出研究獎,國科會杰出研究獎,國科會杰出研究計劃獎。已發(fā)表的論文有百余篇,組合論國際頂級雜志JCTA曾出版專門文章介紹Yeh-species,這個由葉永南研究員名字命名的領(lǐng)域,現(xiàn)在這一方向的研究仍然在不斷深入。目前,葉永南研究員的研究主要在圖的Tutte多項式及其相關(guān)組合結(jié)構(gòu)、計數(shù)組合學(xué)中uniform partitions等方面。

功夫百家乐的玩法技巧和规则| 百家乐官网威尼斯人| 赌百家乐官网的高手| 百家乐官网出千桌| 花垣县| 试玩百家乐代理| 迷你百家乐官网的玩法技巧和规则 | 澳门百家乐赌| 百家乐官网稳赢秘笈| 香港六合彩直播| 破解百家乐真人游戏| 海燕百家乐官网论| 娱乐城百家乐官网高手| 亿酷棋牌世界官网| 百家乐如何视频| 樱桃木百家乐官网桌| 百家乐官网胜率在哪| 大发888 zhidu| 机器百家乐作弊| 百家乐网址是多少| 最新博彩论坛| 澳门顶级赌场娱乐城| 川宜百家乐破解版| 一筒百家乐官网的玩法技巧和规则| 钱柜娱乐城现金网| 百家乐什么方法容易赢| 网上百家乐假| 百家乐币| 澳门百家乐先赢后输| 中原百家乐官网的玩法技巧和规则| 百家乐官网翻天片尾曲| 皇家娱乐场| 六合彩130| 大发888体育| 舟山星空棋牌官网| 大发888娱乐城 34| 现金网hg8568.com| 老虎机单机游戏下载| 威尼斯人娱乐城网址是| 华侨人百家乐的玩法技巧和规则| 现金百家乐赌法|