博彩网大全-双色球博彩知识

網(wǎng)站頁面已加載完成

由于您當(dāng)前的瀏覽器版本過低,存在安全隱患。建議您盡快更新,以便獲取更好的體驗。推薦使用最新版Chrome、Firefox、Opera、Edge

Chrome

Firefox

Opera

Edge

ENG

當(dāng)前位置: 首頁 · 學(xué)術(shù)交流 · 正文

學(xué)術(shù)交流

【學(xué)術(shù)講座】圖的Tutte多項式近期研究進展

發(fā)布時間:2017年10月16日 來源: 點擊數(shù):

報告題目:圖的Tutte多項式近期研究進展

報告人:葉永南教授

講座時間:2017年10月21日10:15-11:00

講座地點:友誼校區(qū)國際會議中心第一會議室

邀請人:張勝貴

承辦學(xué)院:理學(xué)院

聯(lián)系人:陸由

聯(lián)系電話:18202966680

報告簡介

William Tutte is one of the founders of the modern graph. For every undirected graph, Tutte defined a polynomial TG(x,y) in two variables which plays an important role in graph theory. In this talk, we will introduce some recent progresses in studies of the Tutte polynomial of a graph.

In Tutte's original definitions, non-negative integers, called internal and external activities with respect to the arbitrary enumeration, are defined for each spanning tree, they serve as the indices of x and y in the product that is the corresponding term of Tutte polynomial. First, We will introduce the conceptions of \sigma-cut tail and \sigma-cycle tail of T, which are generalizations of the conceptions of internally and externally activities, repectively, where \sigma is a sequence on the edge set of G and T is a spanning tree of G. We will also discuss the conceptions of proper Tutte mapping and deletion-contraction mapping.

In 2004, Postnikov and Shapiro introduced the concept of G-parking functions in the study of certain quotients of the polynomial ring. The Tutte polynomial of the graph G can be expressed in terms of statistics of G-parking functions. Let ? be a nonsingular M-matrix. We will introduce ?-parking functions which is a generalization of G-parking functions. We will introduce the abelian sandpile model and ?-recurrent configurations. There is a simple bijection between ?-parking functions and ?-recurrent configurations. We will discuss the geometry of sandpile model.

In general, the Tutte polynomial encodes information about subgraphs of G. For example, for a connected graph G, TG(1, 1) is the number of spanning trees of G, TG(2, 1) is the number of spanning forests of G, TG(1, 2) is the number of connected spanning subgraphs of G, TG(2, 2) is the number of spanning subgraphs of $G$. At last, we will discuss combinatorial interpretations of TG(1+p, -1)$ and TG(-1, 1).

報告人簡介

葉永南,臺灣中研院數(shù)學(xué)研究所研究員,1985年在美國紐約州立大學(xué)水牛城分部獲得博士學(xué)位,1987年7月返臺擔(dān)任中央研究院數(shù)學(xué)所副研究員,1991年1月晉升為研究員迄今。曾任加拿大魁北克大學(xué)蒙特婁分部資訊與數(shù)學(xué)系研究學(xué)者,麻省理工學(xué)院數(shù)學(xué)系、柏克萊加州大學(xué)統(tǒng)計系和澳洲Monash大學(xué)經(jīng)濟系訪問學(xué)者。學(xué)術(shù)研究除了數(shù)學(xué)之外,還涉及物理化學(xué)、統(tǒng)計、經(jīng)濟等多個領(lǐng)域。曾任臺灣數(shù)學(xué)推動中心主任,中研院數(shù)學(xué)所副所長,多次獲得臺灣中研院杰出研究獎,國科會杰出研究獎,國科會杰出研究計劃獎。已發(fā)表的論文有百余篇,組合論國際頂級雜志JCTA曾出版專門文章介紹Yeh-species,這個由葉永南研究員名字命名的領(lǐng)域,現(xiàn)在這一方向的研究仍然在不斷深入。目前,葉永南研究員的研究主要在圖的Tutte多項式及其相關(guān)組合結(jié)構(gòu)、計數(shù)組合學(xué)中uniform partitions等方面。

线上百家乐平玩法| 百家乐官网代理网址| 百家乐官网筹码订做| 玩百家乐官网技巧巧| 赌场百家乐官网规则| 网上百家乐官网网| 大发888线上娱乐城百家乐| 百家乐官网10个人| 百家乐视频官方下载| 郑州百家乐的玩法技巧和规则| 百家乐是如何骗人的| 蜀都棋牌游戏大厅| 大发888开户注册平台| 赌王百家乐官网的玩法技巧和规则| 百家乐网上真钱娱乐场开户注册 | 在线百家乐娱乐| 百家乐认牌| 百家乐分路单析器| 德州扑克胜率计算器| 搓牌百家乐官网技巧| 希尔顿百家乐官网娱乐城 | 百家乐网站加盟| 大发888娱乐官方网站| 百家乐官网书包| 澳门百家乐玩法| 百家乐官网视频官方下载| 百家乐游戏资料网| 辉县市| 自贡百家乐娱乐场开户注册| 百家乐官网游戏大厅下| E世博投注| 北京百家乐官网网上投注| 澳门百家乐网址多少| 澳门百家乐官网打缆| 全讯网备用| 网络百家乐官网的玩法技巧和规则| 百家乐出千桌| 娱乐城百家乐规则| 百家乐官网赢足球博彩皇冠| bet365直播| 威尼斯人娱乐城网络博彩|