報告題目:具有奇異鄰接矩陣的圖的構造
Topic:Construction of graphs with singular adjacency matrix
報告人:Johannes Siemons教授
Speaker:Prof.Johannes Siemons
邀請人:劉曉剛副教授
Host:Xiaogang Liu
報告時間:2019年4月19日(星期五)下午14:30-15:30
Time:14:30 pm-15:30 pm, April 19,2019
報告地點:長安校區理學院214會議室
Place:Conference Room 214, School of Natural and Applied Sciences
報告簡介:令Γ表示不含自環與重邊的有限圖。如果圖Γ的鄰接矩陣是奇異的,那么就稱Γ為奇異圖。也就是說,Γ為奇異圖當且僅當Γ的鄰接譜含有0特征值。奇異圖不但在物理、化學(例如,Hückel理論)領域有著非常重要的應用,而且對代數、組合、幾何領域中的一些問題也有一定的影響。本報告首先介紹圖的奇異性、解釋它的重要性與漸進性,內容包括T. Tao、Van Vu、K.Costello與E. Szemerédi的研究工作。雖然對圖譜理論知之甚詳——可通過研究圖的譜來確定圖的奇異性,但是圖的奇異性的一般性理論本身不太可能出現。具有特殊性質的圖——點傳遞圖的奇異性可以通過它的自同構群G的線性表示理論來進行研究,研究發現圖的奇異性與G的特征標的零性有關。本報告的第二部分介紹圖的譜與自同構群之間的聯系,詳細內容見參考文獻[1]。
報告人簡介:Johannes Siemons,東安格利亞大學(University of East Anglia)教授,1979年獲英國倫敦帝國理工學院博士學位。Journal of Combinatorial Designs期刊編委(2006-至今),上海組合學國際會議學術委員會委員(2014-至今)。研究領域涉及代數、組合、設計、圖論、有限幾何、有限置換群及其應用等。在Journal of Algebra、Journal of Combinatorial Theory Ser A、Journal of Algebraic Combinatorics、Designs, Codes and Cryptography、European Journal of Combinatorics等期刊上發表學術論文70余篇,被引500余次。長期主講代數(Algebra)、幾何(Geometry)、群論(Group Theory)、圖論(Graph Theory)、組合(Combinatorics)等課程,精于從概念本質啟發、引導學生,教法獨特,效果優異。
Speaker’s Biography:Johannes Siemons,Professor at the University of East Anglia. He got his PhD degree from Imperial College London, UK in 1979. He is the editor of Journal of Combinatorial Design(2006-present) and a member of the academic committee of Shanghai International Conference on Combinatorics (2014-present). His main research area is on algebra, combinatorics, design, graph theory, finite geometry, finite permutation group and its applications, etc. He has published more than 70 papers, which was cited more than 500 times, in high level journals includingJournal of Algebra,Journal of Combinatorial Theory Ser A,Journal of Algebraic Combinatorics,Designs, Codes and Cryptography,European Journal of Combinatorics, etc. He has taught Algebra,Geometry,Group Theory,Graph Theory,Combinatorics, etc. for many years. He is proficient in enlightening and guiding students from the essence of concept, with unique teachings methods and excellent results.