報告題目:A DYNAMIC BAYESIAN NONPARAMETRIC MODEL FOR BLIND CALIBRATION OF SENSOR NETWORKS
報 告 人:鐘雄虎博士(新加坡南洋理工大學高級博士后研究員)
報告時間:2017年6月16日下午4:00-5:30
報告地點:航海學院東配樓
邀 請 人:姜喆副教授
報告摘要:
In the sensor network blind calibration problem, the gains and offsets of sensors are estimated from noisy observations of unknown underlying signals. This is in general a non-identifiable problem, unless restrictive assumptions on the signal subspace or sensor observations are imposed. To overcome these assumptions, we propose a dynamic Bayesian nonparametric model. We show that if the unknown underlying signals follow the first-order auto-regressive process, then the sensor gains and offsets are identifiable. Furthermore, our model allows sensors to form clusters, where each cluster observes the same underlying signal. The clusters are however not known a priori, and are learned through the sensor data. We present a block Gibbs sampling inference method based on the forward filtering backward sampling algorithm. Simulation results suggest that our approach can estimate the sensor gains and offsets with good accuracy, and performs better than methods that first perform clustering and then blind calibration.
報告人簡介:
鐘雄虎博士于2010年獲得英國愛丁堡大學工程學院數字通信研究所博士學位,主要研究方向為非參數貝葉斯學習以及網絡傳感器信息融合。目前于新加坡南洋理工大學擔任高級博士后研究員,從事智能車聯網通信技術及大數據處理項目的研究工作。并分別于2013年和2014年應邀在德國波恩大學和英國薩里大學進行短期合作研究。共發表國際期刊及會議論文50余篇,并于2013年獲得第12屆海洋電子國際會議最佳論文獎,自2013年來一直擔任IET Signal Processing期刊副主編。