博彩网大全-双色球博彩知识

網(wǎng)站頁(yè)面已加載完成

由于您當(dāng)前的瀏覽器版本過(guò)低,存在安全隱患。建議您盡快更新,以便獲取更好的體驗(yàn)。推薦使用最新版Chrome、Firefox、Opera、Edge

Chrome

Firefox

Opera

Edge

ENG

當(dāng)前位置: 首頁(yè) · 學(xué)術(shù)交流 · 正文

學(xué)術(shù)交流

【學(xué)術(shù)報(bào)告】研究生靈犀學(xué)術(shù)殿堂第264期之Markus Raschke報(bào)告會(huì)通知

發(fā)布時(shí)間:2017年12月14日 來(lái)源: 點(diǎn)擊數(shù):

全校師生:

我校定于2017年12月15日舉辦研究生靈犀學(xué)術(shù)殿堂——Markus Raschke教授報(bào)告會(huì),現(xiàn)將有關(guān)事項(xiàng)通知如下:

1.報(bào)告會(huì)簡(jiǎn)介

報(bào)告人:Markus Raschke教授

時(shí)間:2017年12月15日(星期五)上午

地點(diǎn):理學(xué)院學(xué)術(shù)報(bào)告廳

主題:Seeing with the nano-eye: accessing structure, function, and dynamics of matter on its natural length and time scales

內(nèi)容簡(jiǎn)介:To understand and ultimately control the properties of most functional materials, from molecular soft-matter to quantum materials, requires access to the structure, coupling, and dynamics on the elementary time and length scales that define the microscopic interactions in these materials. To gain the desired nanometer spatial resolution with simultaneous spectroscopic specificity we combine scanning probe microscopy with different optical, including coherent, nonlinear, and ultrafast spectroscopies. The underlying near-field interaction mediated by the atomic-force or scanning tunneling microscope tip provides the desired deep-sub wavelength nano-focusing enabling few-nm spatial resolution. I will introduce our generalization of the approach in terms of the near-field impedance matching to a quantum system based on special optical antenna-tip designs. The resulting enhanced and qualitatively new forms of light-matter interaction enable measurements of quantum dynamics in an interacting environment or to image the electromagnetic local density of states of thermal radiation. Other applications include the inter-molecular coupling and dynamics in soft-matter hetero-structures, surface plasmon/phonon interferometry as a probe of electronic structure and dynamics in 2D materials, and quantum phase transitions in correlated electron materials. These examples highlight the general applicability of the new near-field microscopy approach, complementing emergent X-ray and electron imaging tools, aiming towards the ultimate goal of probing matter on its most elementary spatio-temporal level.

2.歡迎各學(xué)院師生前來(lái)聽(tīng)報(bào)告。報(bào)告會(huì)期間請(qǐng)關(guān)閉手機(jī)或?qū)⑹謾C(jī)調(diào)至靜音模式。

黨委研究生工作部

理學(xué)院

2017年12月14日

 

報(bào)告人簡(jiǎn)介:

Markus Raschke is professor at the Department of Physics, Department of Chemistry, and JILA at the University of Colorado at Boulder. His research is on the development and application of new nano-scale nonlinear and ultrafast spectroscopy techniques to control the light-matter interaction on the nanoscale. These techniques allow for imaging structure and dynamics of molecular and correlated matter with nanometer spatial resolution. He received his PhD in 2000 from the Max-Planck Institute of Quantum Optics and the Technical University in Munich, Germany. Following research appointments at the University of California at Berkeley, and the Max-Born-Institute in Berlin, he became faculty member at the University of Washington in 2006, before moving with his group to Boulder in 2010. He is fellow of the Optical Society of America, the American Physical Society, and the American Association for the Advancement of Science. He is also an associate editor of the journal of Science Advances.

全讯网网站| 百家乐赌博牌路分析| 3U百家乐官网游戏| 超级百家乐2龙虎斗| 百家乐分析网| 百家乐官网游戏分析| 做生意门面朝向风水| 大发888真人 新浪微群| 百家乐官网赌博策略大全| 网上百家乐危险| 菲律宾在线游戏| 百家乐赌博赌博网站| 百家乐官网彩金| 德州扑克概率| 百家乐赌场代理合作| 百家乐官网赌博分析网| 皇冠现金网安全吗| 永利百家乐赌场娱乐网规则| 立即博百家乐的玩法技巧和规则 | 电脑百家乐官网玩| 九州百家乐官网的玩法技巧和规则| 神娱乐百家乐的玩法技巧和规则 | 巴比伦百家乐官网娱乐城| 百家乐官网投注办法| 单机棋牌游戏| 玩百家乐有几种公式| 百家乐实战技术| 立博百家乐的玩法技巧和规则 | 百家乐官网对子计算方法| 百家乐览| 迷你百家乐官网的玩法技巧和规则| 崇礼县| 真人百家乐怎么对冲| 冠军娱乐城| 百家乐翻天粤语快播| 威尼斯人娱乐城网络百家乐| 玩百家乐保时捷娱乐城| 葡京百家乐注码| 上海百家乐官网的玩法技巧和规则| 澳门百家乐21点| 豪华百家乐官网桌子厂家 |