博彩网大全-双色球博彩知识

網(wǎng)站頁(yè)面已加載完成

由于您當(dāng)前的瀏覽器版本過(guò)低,存在安全隱患。建議您盡快更新,以便獲取更好的體驗(yàn)。推薦使用最新版Chrome、Firefox、Opera、Edge

Chrome

Firefox

Opera

Edge

ENG

當(dāng)前位置: 首頁(yè) · 學(xué)術(shù)交流 · 正文

學(xué)術(shù)交流

【學(xué)術(shù)報(bào)告】研究生靈犀學(xué)術(shù)殿堂第264期之Markus Raschke報(bào)告會(huì)通知

發(fā)布時(shí)間:2017年12月14日 來(lái)源: 點(diǎn)擊數(shù):

全校師生:

我校定于2017年12月15日舉辦研究生靈犀學(xué)術(shù)殿堂——Markus Raschke教授報(bào)告會(huì),現(xiàn)將有關(guān)事項(xiàng)通知如下:

1.報(bào)告會(huì)簡(jiǎn)介

報(bào)告人:Markus Raschke教授

時(shí)間:2017年12月15日(星期五)上午

地點(diǎn):理學(xué)院學(xué)術(shù)報(bào)告廳

主題:Seeing with the nano-eye: accessing structure, function, and dynamics of matter on its natural length and time scales

內(nèi)容簡(jiǎn)介:To understand and ultimately control the properties of most functional materials, from molecular soft-matter to quantum materials, requires access to the structure, coupling, and dynamics on the elementary time and length scales that define the microscopic interactions in these materials. To gain the desired nanometer spatial resolution with simultaneous spectroscopic specificity we combine scanning probe microscopy with different optical, including coherent, nonlinear, and ultrafast spectroscopies. The underlying near-field interaction mediated by the atomic-force or scanning tunneling microscope tip provides the desired deep-sub wavelength nano-focusing enabling few-nm spatial resolution. I will introduce our generalization of the approach in terms of the near-field impedance matching to a quantum system based on special optical antenna-tip designs. The resulting enhanced and qualitatively new forms of light-matter interaction enable measurements of quantum dynamics in an interacting environment or to image the electromagnetic local density of states of thermal radiation. Other applications include the inter-molecular coupling and dynamics in soft-matter hetero-structures, surface plasmon/phonon interferometry as a probe of electronic structure and dynamics in 2D materials, and quantum phase transitions in correlated electron materials. These examples highlight the general applicability of the new near-field microscopy approach, complementing emergent X-ray and electron imaging tools, aiming towards the ultimate goal of probing matter on its most elementary spatio-temporal level.

2.歡迎各學(xué)院師生前來(lái)聽(tīng)報(bào)告。報(bào)告會(huì)期間請(qǐng)關(guān)閉手機(jī)或?qū)⑹謾C(jī)調(diào)至靜音模式。

黨委研究生工作部

理學(xué)院

2017年12月14日

 

報(bào)告人簡(jiǎn)介:

Markus Raschke is professor at the Department of Physics, Department of Chemistry, and JILA at the University of Colorado at Boulder. His research is on the development and application of new nano-scale nonlinear and ultrafast spectroscopy techniques to control the light-matter interaction on the nanoscale. These techniques allow for imaging structure and dynamics of molecular and correlated matter with nanometer spatial resolution. He received his PhD in 2000 from the Max-Planck Institute of Quantum Optics and the Technical University in Munich, Germany. Following research appointments at the University of California at Berkeley, and the Max-Born-Institute in Berlin, he became faculty member at the University of Washington in 2006, before moving with his group to Boulder in 2010. He is fellow of the Optical Society of America, the American Physical Society, and the American Association for the Advancement of Science. He is also an associate editor of the journal of Science Advances.

博彩通百家乐官网概率| 做生意摆放什么财神爷| 云鼎百家乐程序开发有限公司| 水果机教程| 百家乐视频游戏双扣| 速博百家乐的玩法技巧和规则 | 百家乐官网游乐园| 大发888娱乐成| 百家乐官网发牌| 利澳娱乐城注册| 大发888官网 df888ylcxz46 | 赌场百家乐作弊| 百家乐庄多还是闲多| 托克托县| A8百家乐赌场娱乐网规则| 百家乐官网平台注册送现金| 百家乐官网庄6点| 百家乐官网数据程序| 百家乐官网庄闲和的概率| 百家乐官网群号| 百家乐永利赌场娱乐网规则| 博狗百家乐官网真实| 百家乐官网庄闲的冷热| 澳门百家乐的故事| 百家乐如何切牌好| 澳门百家乐官网网上直赌| 优博百家乐现金网| 澳门百家乐有哪些| 娱乐城百家乐官网的玩法技巧和规则 | 巴西百家乐官网的玩法技巧和规则| 娱乐城新用户送彩金| 狮威娱乐城| 优博百家乐官网yobo88| 百家乐娱乐城网站| 大发888官网z46| 玩百家乐技巧看路| 欧洲百家乐的玩法技巧和规则| 网上百家乐公司| 钟祥市| 优博国际| 同心县|