報告題目:Controlling functional properties and chemical reaction kinetics in low-dimensional systems
報告人:德國明斯特大學Harald Fuchs院士
報告時間:2019年10月18日(星期五)上午10:00
報告地點:長安校區啟翔樓233會議室
邀請人:黃維院士
承辦學院:柔性電子研究院
聯系人:張倩文
聯系電話:88460889
報告簡介:
The electronic and optical properties of inorganic systems as well as the reaction behavior of organic molecules strongly depend on their dimensionality and/or that of their environment. Thus, controlling the dimensionality as well as the bond order in 0D, 1D and 2D systems at the sub-nanometer scale, their physical properties may qualitatively deviate from that of 3D bulk materials of the same chemical composition. For example, materials such a graphene exhibit excellent mechanical and thermal properties as well as high 2D electronic mobility. However, in their unmodified state these Dirac systems are lacking a finite electronic band gap, required for generating transistors. Graphene nanoribbons, representing 1D systems, on the other hand, allowed to overcome this limitation by using bottom up on-surface chemistry to control the ribbon latitude and thus, the band gap. In contrast, in other 2D systems such as Chalcogenides, finite band gaps are found. However, it is still a technical challenge here to grow large-scale systems with well-defined geometry for application in opto-electronic device. Our recent STM investigations on phosphenes and antimonene using UHV epitaxial growth revealed promising perspectives in these directions [1].
In the case or organic molecules, surfaces represent 1D or 2D spatial confinements for on-surface chemistry allowing a unique regioselective and kinetic control of chemical reaction schemes which otherwise cannot be done in liquid- or gas phase chemistry. In addition, surfaces can act catalytically and by reconstruction or faceting, and the confinement can display one- or zero dimensional character. Advanced LT-UHV Scanning probe techniques (LT-STM, nc-AFM) allow a detailed sub-molecularly resolved analysis of the reaction pathways, including intermediates, while complementary PES techniques (XPS/UPS) reveal the chemical reaction status of molecular systems [2, 3]. A novel type of nc-AFM tip developed in our group allows us to quantitatively characterize individual chemical bonds and even their bond-order with unprecedented precision [4].
Finally, the construction of high performance functional organic opto-electronic devices, following the biological self-organization approach can be done bottom up by combining nanotechnological methods with chemistry. Self-assembled pre-patterned interface layers, for example, allow to grow functional molecular layers in OFET/OSC structures in a well-controlled way, resulting, for example, in a significant increase in charge carrier mobility by more than one order of magnitude, without modifying the chemical systems making up the active OFET channel structures [5]. Similarly, flexible organic photo responsive systems with ultrahigh detectivity can be generated [6].
References:
[1] T. Niu et al.Adv. Mater. 2019, 31, 1902606
[2] G. Wang et al., Nature Chemistry, 9 (2017) 152
[3] L. Liu et al., J. Am. Chem. Soc. 140, (2018) 6000
[4] H. M?nig et al., Nature Nanotechnology 13, (2018) 371
[5] D. Ji et al., J. Am. Chem. Soc. 139 (2017) 2734
[6] D. Ji et al., Nature Comm. (2018) 9 (2018) 2339
報告人介紹:
Harald Fuchs院士是德國科學院院士、德國工程院院士、歐洲科學院院士以及發展中國家科學院院士。他于1985年在IBM研究實驗室從事博士后研究工作,1985年至1993年擔任德國BASF公司項目主管,1993年至今在德國明斯特大學從事研究工作,現任德國明斯特大學物理研究所所長。因為杰出的學術成就,曾獲得“菲利普莫里斯獎”、德國聯邦十字勛章等榮譽,在國際學術界有廣泛影響力。今年10月,獲得了2019年度“中國政府友誼獎”。
Harald Fuchs院士長期從事表面化學反應及納米生物領域的研究工作并做出了重要貢獻,是國際知名的表面化學及納米生物學學者。哈拉爾德?福克斯院士是明斯特大學納米技術研究中心的創始人,其研究領域主要集中在納米科學和納米技術,在掃描探針技術、自組裝納米材料、納米生物體系等領域都取得了卓越的成就。迄今已在Nature,Science,Nature Nanotech,Nature Mat.,JACS,Angew.Chem.Int.Ed.,Adv.Mater.等重要期刊發表論文500余篇,擁有35個專利申請。